

COLORADO SCHOOL OF MINES ELECTRICAL ENGINEERING DEPARTMENT

EENG 577

M1 Quiz KEY

Question 1: Consider the system below, find the average power, the reactive power, and the power factor.

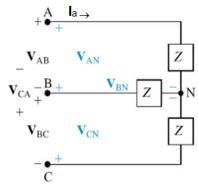
$$\begin{split} \mathrm{P} &= \frac{v_m I_m}{2} \mathrm{cos}(\,\theta_v - \theta_i) = \frac{(20)(100)}{2} \mathrm{cos}(\,-45^\circ - 165^\circ) = -866 \,\mathrm{W} \,(\text{Generating}) \\ \mathrm{Q} &= \frac{v_m I_m}{2} \mathrm{sin}(\,\theta_v - \theta_i) = \frac{(20)(100)}{2} \mathrm{sin}(\,-45^\circ - 165^\circ) = 500 \,\mathrm{var} \,(\text{Consuming}) \\ \mathrm{pf} &= \mathrm{cos}(\,\theta_v - \theta_i) = \mathrm{cos}(\,-45^\circ - 165^\circ) = -0.866 \end{split}$$

Lagging PF since it is consuming reactive power

Question-2: A load has a voltage $V=208 \angle -30^{\circ} V$ and the current $I=2 \angle 20^{\circ} A$. The load power factor is about:

a) 0.24 Lagging **b**) 0.51 Leading **c**) 0.64 Leading **d**) None of the above

Solution: $Z=V/I = 208 \angle -30^{\circ}/2 \angle 20^{\circ} = 104 \angle -50^{\circ}$


 $PF = \cos(-50^{\circ}) = 0.643 \text{ Leading}$

Question 3: A balanced 3-phase load Z=4+j3 Ω /phase is Y-connected to a balanced 550 V (L-L) Source, with abc sequence. The line current I_a is about:

a) 64 ∠-37° A **b)** 23 ∠-27° A **c)** 95 ∠-45° A **d)** None of the above

Solution

Z= 4+j3= 5
$$\angle 36.9^{\circ}$$

 $\mathbf{V}_{AN}=550/\sqrt{3}=317.5\angle 0^{\circ}$ V
 $\mathbf{I}_{L}=\mathbf{I}_{a}=317.5\angle 0^{\circ}/Z=63.5\angle -36.9^{\circ}$ A

