

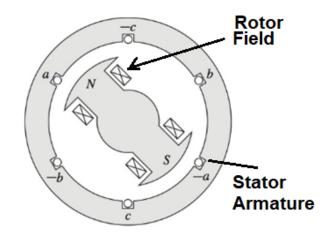
COLORADO SCHOOL OF MINES ELECTRICAL ENGINEERING DEPARTMENT

EENG 577

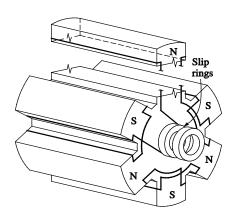
ADVANCED ELECTRICAL MACHINE DYNAMICS FOR SMART-GRID SYSTEMS

M3-P2 Synchronous Generators

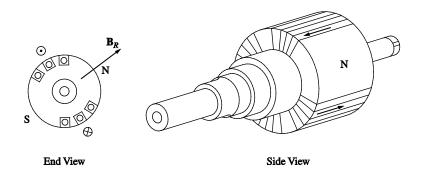
Dr. A.A. Arkadan


Learning Objectives

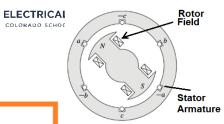
- Explain the equivalent circuit of a synchronous generator.
- Be able to sketch phasor diagrams for a synchronous generator.
- Write and explain the equations for power and torque in a synchronous generator.
- Extract the characteristics of a synchronous machine from measurements (OCC and SCC).
- Explain how terminal voltage varies with load in a synchronous generator operating alone.
- Be able to calculate the terminal voltage at various load conditions.
- Explain the conditions required to parallel two or more synchronous generators.
- Explain the operation of synchronous generators in parallel with a very large power system (or infinite bus).

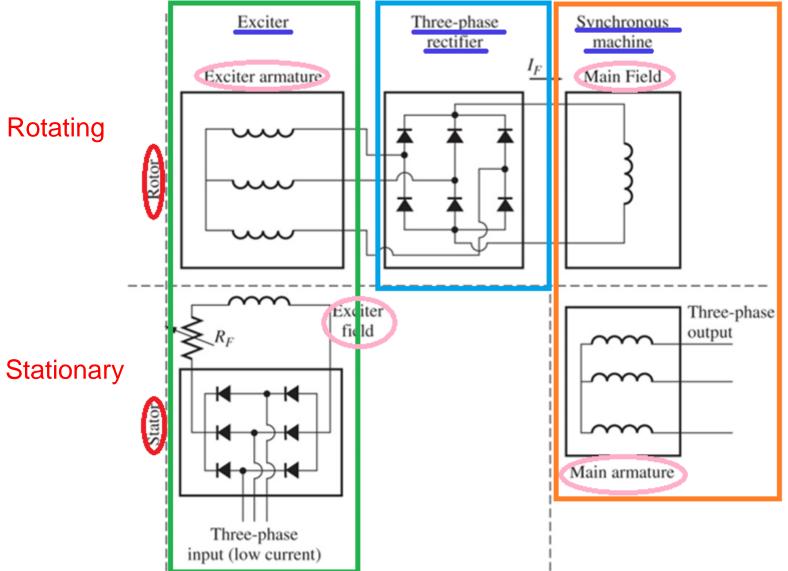


Basic Topology


- In the *stator*, we have a three-phase winding. Since the main voltage is induced in this winding, it is also called *armature winding*.
- In the rotor, the magnetic field is generated either by a permanent magnet or by applying dc current to rotor winding. Since rotor is producing the main field, it is also called *field winding*. Two rotor designs are common:

Salient-pole rotor with "protruding" poles




Round or Cylindrical rotor with a uniform air gap

Brushless Exciter System

for Large Generators

Rotor Field **Brushless Excitation System with Pilot Exciter** for Large Generators Pilot exciter Exciter Synchronous Stator Armature generator Pilot exciter Exciter armature Main field field Three-Permanent phase magnets rectifier Three-phase < output Threephase Stator rectifier Exciter Main armature Pilot exciter field armature

The Speed of Rotation of a Synchronous Generator

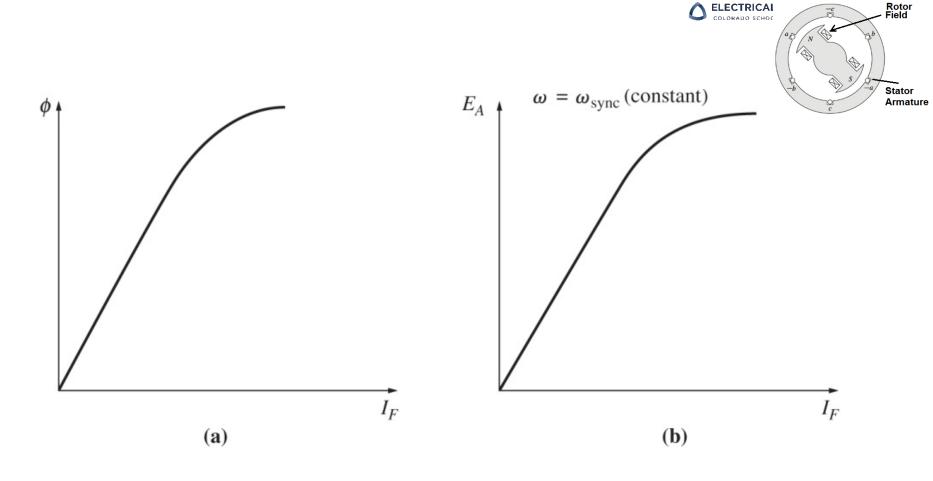
$$f_{_{e}}=\frac{n_{_{m}}P}{120}$$

Where

 $f_{\rm e}$ = electrical frequency, in Hz

 n_m = mechanical speed of magnetic field, in rpm = rotor speed, in rpm

P = number of poles



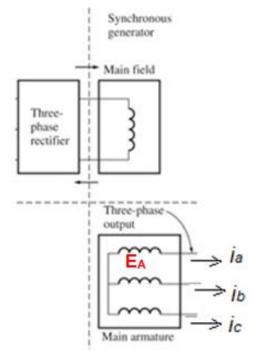
The Internal Generated Voltage of a Synchronous Generator

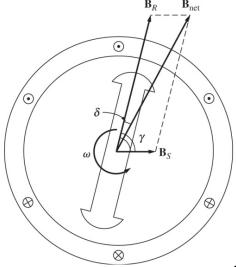
It was shown previously, the <u>magnitude of the rms</u>
 voltage induced in each stator phase was found to be

$$E_A = \sqrt{2}\pi N_C \phi f = \frac{N_C \phi}{\sqrt{2}} \omega = K \phi \omega$$

- The induced voltage is proportional to the rotor flux for a given rotor angular frequency in electrical Radians per second.
- Since the rotor flux depends on the field current I_F , the induced voltage E_A is related to the field current as shown below. This is generator *magnetization curve* or the *open-circuit characteristics* of the machine.

(a) Plot of flux versus field current for a synchronous generator. (b) The magnetization curve for the synchronous generator.

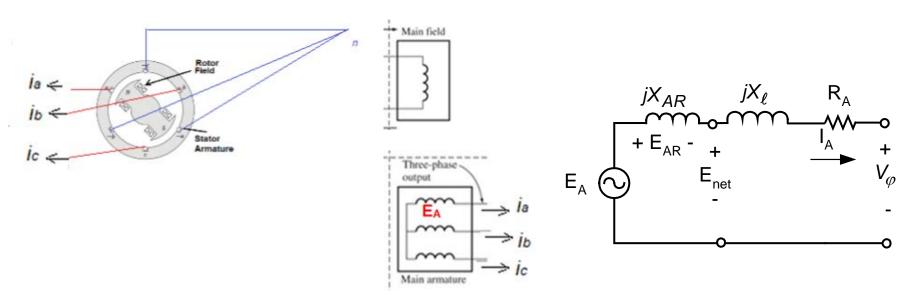

$$E_A = \sqrt{2}\pi N_C \phi f = \frac{N_C \phi}{\sqrt{2}} \omega = K \phi \omega$$


The Equivalent Circuit of a Synchronous Generator

- When generator is not loaded, the internal generated voltage E_A is the same as the voltage appearing at the terminals of the generator, V_{ϕ} .
- When generator is loaded, a balanced 3-phase current will flow which results in the stator rotating magnetic field B_S. The net air gap flux density is the sum of the rotor and stator magnetic fields:

$$m{B}_{\!\scriptscriptstyle net} = m{B}_{\!\scriptscriptstyle R} + m{B}_{\!\scriptscriptstyle S}$$

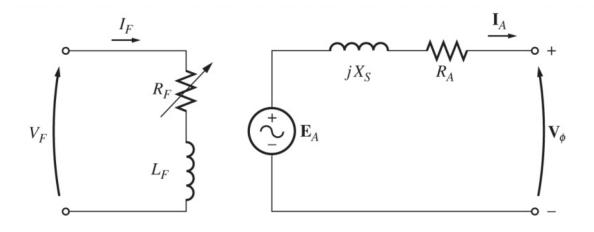
Note: Torque angle δ is the angle between B_R and B_{net}

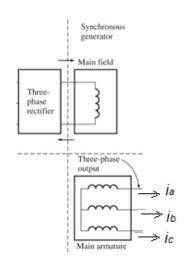


 The voltage induced in the armature would be the sum of the voltages induced by rotor field (E_A) and the voltage induced by the stator field (E_{AR}, or armature-reaction voltage due to the load current).

$$oldsymbol{E}_{net} = oldsymbol{E}_{A} + oldsymbol{E}_{AR}$$

Two other voltage drops must be considered:

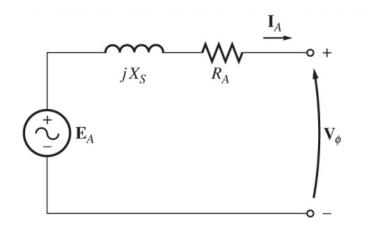

- \circ Stator leakage inductance or reactance, X_{ℓ} , of the armature coils.
- Resistance of the armature coils, R_A
- The armature-reaction voltage may be represented by an inductive voltage drop across an armature-reaction reactance X_{AR}, as shown here.

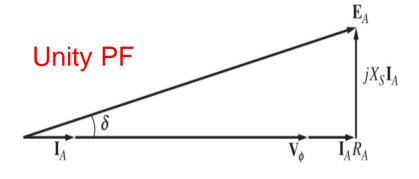


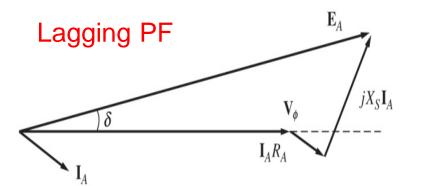
 The two reactances may be combined into a single reactance called the synchronous reactance of the machine:

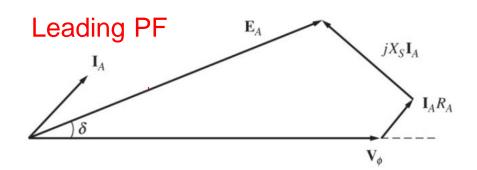
$$X_{s} = X_{AR} + X_{\ell}$$

The per phase equivalent circuit of a synchronous generator.

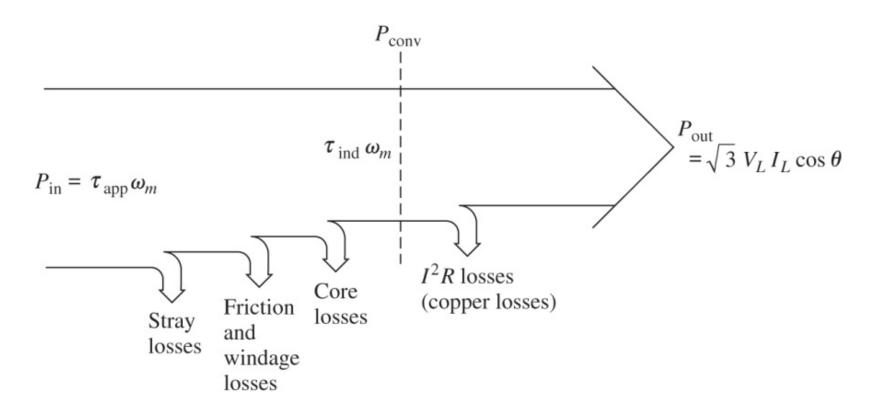



 $V_{\mathbf{C}}$




The Phasor Diagram of a Synchronous Generator

- The Kirchhoff's voltage law equation for the armature circuit is $\mathbf{E}_{A} = \mathbf{V}_{a} + \mathbf{I}_{A}(R_{A} + jX_{S})$
- The phasor diagrams for unity, lagging, and leading power factors load are shown here:



Power and Torque in Synchronous Generators

The power-flow diagram of a synchronous generator

The input mechanical power is given by

$$P_{_{\!in}}= au_{_{\!app}}\omega_{_{\!m}}$$

 The power converted from mechanical to electrical power is given by

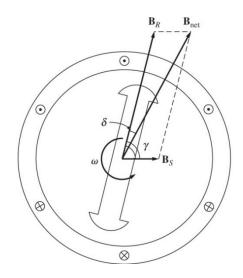
$$P_{conv} = \tau_{ind}\omega_{m} = 3E_{A}I_{A}Cos(\gamma)$$

The real and reactive electrical output power is given by

$$P_{OUT} = 3V_{\phi}I_{A}Cos(\theta)$$

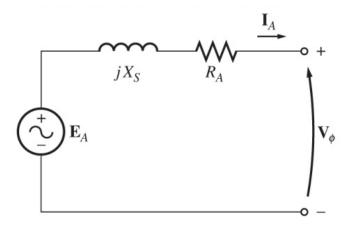
$$Q_{OUT} = 3V_{A}I_{A}Sin(\theta)$$

$$V_{1}$$

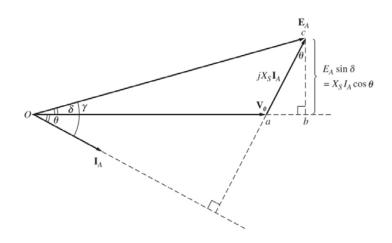

$$V_{2}$$

$$V_{3}$$

$$V_{4}$$


$$V_{5}$$

$$V_{6}$$

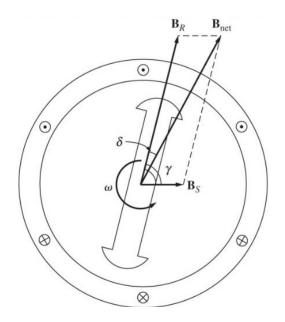

Maximum Power Delivered by a Synchronous Machine

• If the armature resistance is ignored (Since $R_A \ll X_S$),

$$I_A Cos(\theta) = \frac{E_A Sin(\delta)}{X_S}$$

$$P_{CONV} = P_{OUT} = \frac{3V\phi E_A Sin(\delta)}{X_S}$$

Simplified phasor diagram with armature resistance ignored


Induced torque of the generator is given by

$$\tau_{_{\textit{ind}}} = \frac{\textit{3V}\phi\textit{E}_{_{\textit{A}}}\!\textit{Sin}(\delta)}{\omega_{_{\textit{m}}}\!\textit{X}_{_{\textit{S}}}}$$

Also Note:

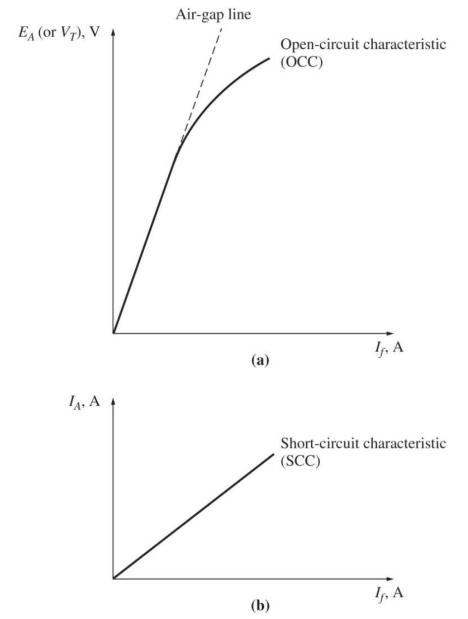
Torque angle δ is the angle between B_R and B_{net}

$$\delta = \widehat{\mathbf{V}_{\varphi}}, \widehat{\mathbf{E}}_{A} ; \widehat{\mathbf{B}}_{net}, \widehat{\mathbf{B}}_{R}$$

Measuring Synchronous Generator Parameters

- □ Open-circuit and short-circuit tests to obtain magnetization characteristics and synchronous reactance of the generator.
 - ➤ Open-circuit test: With loads disconnected, generator is driven at rated speed. The terminal voltage is measured as field current varied.
 - ➤ Short-circuit test: **Armature terminals shorted**, generator is **driven at rated speed** and the **armature current is measured as field current varied**.
- ☐ DC voltage test to obtain the armature resistance.

IEEE Std. 115-1995 (R2002) IEEE Guide: Test Procedures for Synchronous Machines

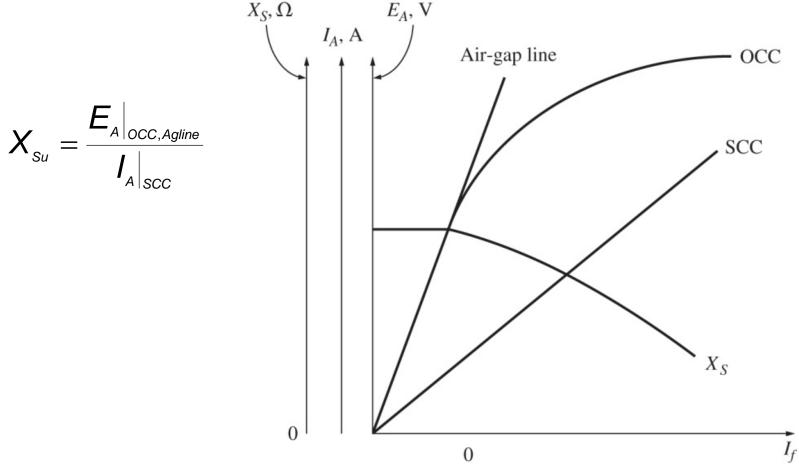

Part I: Acceptance and Performance Testing

Part II: Test Procedures and Parameter Determination for

Dynamic Analysis

Sponsor

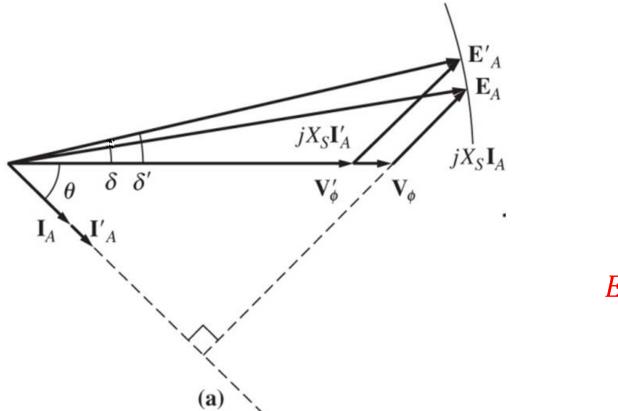
- Electric Machinery Committee of the IEEE Power Engineering Society
- Reaffirmed 11 September 2002
- Approved 12 December 1995, IEEE Standards Board
- Approved 16 July 1996, American National Standards Institute



(a) The open-circuit characteristics (OCC) of a synchronous generator. (b) The short-circuit characteristics (SCC) of a synchronous generator.

Steps to obtain **unsaturated synchronous reactance** X_{su} at a given field current:

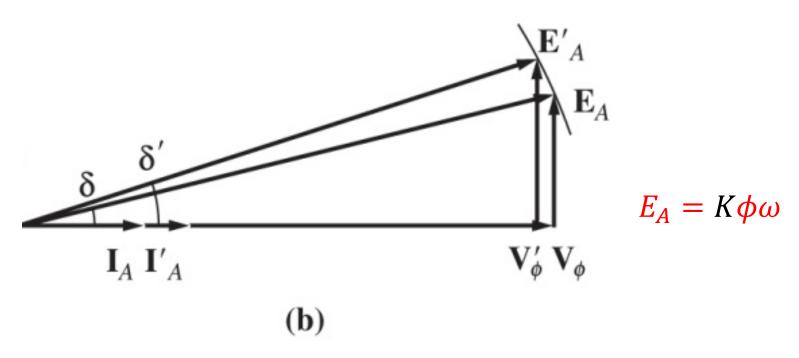
- 1. Get E_A from air-gap line on OCC for a selected I_f
- 2. Get the **armature current** at the same from SCC


A sketch of the approximate synchronous reactance of a synchronous generator as a function of the field current.

Stand-Alone Operation

The Effect of Load Changes on a Synchronous Generator Operating Alone

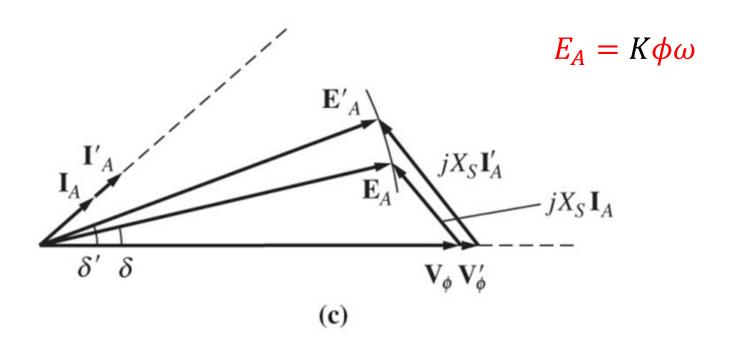
At constant field current & rotor speed


$$E_A = K\phi\omega$$

The effect of an increase in generator load upon its terminal voltage. At a fixed power factor (a) **Lagging**

The Effect of Load Changes on a Synchronous Generator Operating Alone

At constant field current & rotor speed



The effect of an increase in generator load upon its terminal voltage. At a fixed power factor (b) unity

The Effect of Load Changes on a Synchronous Generator Operating Alone

At constant field current & rotor speed

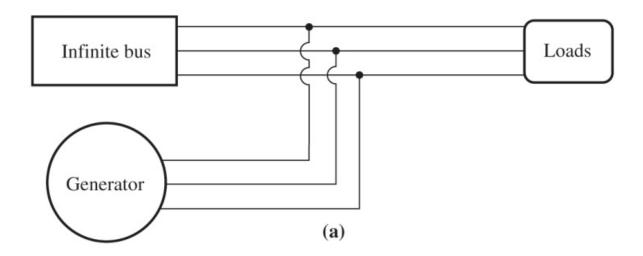
The effect of an increase in generator load upon its terminal voltage. At a fixed power factor (c) leading.

Voltage Regulation of Generator Operating Alone

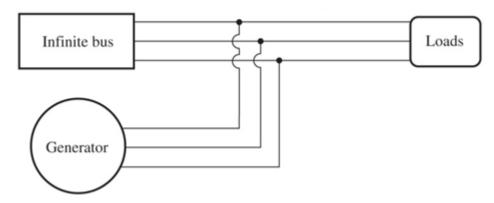
Voltage Regulation, VR, compares the output voltage of the generator at no load with the output voltage at full load while the input field current is kept constant:

$$VR = [(V_{nl} - V_{fl})/V_{fl}]x 100\%$$

Typically, a synchronous generator operating at:

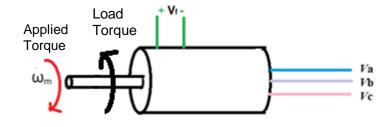

- lagging power factor has a large positive voltage regulation,
- unity power factor has a small positive voltage regulation, and
- leading power factor often has a negative voltage regulation.

How to control terminal voltage:

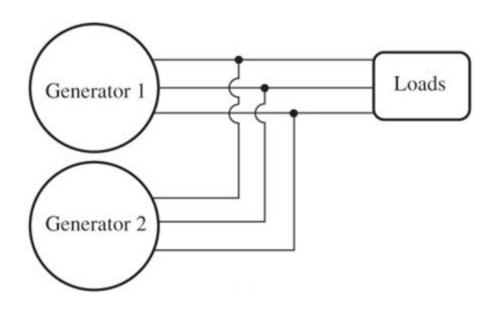

- 1. Decreasing the field resistance in the generator increases its field current.
- 2. An increase in the field current increases the flux in the machine.
- 3. An increase in the flux increases the internal generated voltage $E_A = K\phi\omega$
- 4. An increase in E_A increases V_{ϕ} and the terminal voltage of the generator.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Infinite Bus Operation



Operation of Synchronous Generators in Parallel with Large Power Systems


A synchronous generator operating in parallel with an infinite bus

 Generator and infinite bus have same frequency and terminal voltage since their output conductors are tied together.

$$P = \tau \omega_m$$

Parallel Operation of Two Generators

Two generators operating together:

- 1. The <u>system is constrained</u> in that the <u>total power supplied</u> by the two generators together must <u>equal the amount consumed by the load</u>.

 <u>Neither f_{sys} nor V_T is constrained to be constant.</u>
- 2. To adjust the real power sharing between generators without changing f_{sys} , simultaneously increase the governor set points on one generator while decreasing the **governor** set points on the other. The machine whose governor set point was increased will assume more of the load.
- 3. To adjust f_{sys} without changing the real power sharing, simultaneously increase or decrease both generators' governor set points.
- 4. To adjust the reactive power sharing between generators without changing V_T, simultaneously increase the field current on one generator while decreasing the field current on the other. The machine whose field current was increased will assume more of the reactive load.
- 5. To adjust V_T without changing the reactive power sharing, simultaneously increase or decrease both generators' field currents.

Note: the **governor** or speed controller, is a device used to measure and regulate the speed of a machine.

Learning Outcomes

At the completion of this module, the student should be able to:

- 1) Draw and explain the equivalent circuit of a synchronous generator.
- 2) Sketch phasor diagrams for a synchronous generator.
- 3) Write and explain the equations for power and torque in a synchronous generator.
- 4) Extract the characteristics of a synchronous machine from laboratory measurements (OCC and SCC).
- 5) Describe the operation of a synchronous generator *operating alone* and calculate a load current, voltage, power, torque and efficiency values.
- 6) Describe the operation of synchronous generators *in parallel* with a very large power system (or infinite bus) and calculate current, voltage, power, torque and efficiency values.
- 7) Describe the conditions required to *parallel two or more synchronous* generators and calculate current, voltage, power, torque and efficiency values.